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Abstract

This supplementary document focuses on more detailed analysis regarding the methodology and experiments presented
in the main paper, including implementation details regarding network architecture and training (Sec. 1) and discussion of
supportive quantitative and qualitative analysis (Sec. 2). Please see our supplementary video for additional motion planning
policy results. To facilitate future research in scalable, generalized, and adaptive planning policies, all of our code, models,
and datasets are available at https://infdriver.github.io/.

1. Implementation Details
In this section, we provide additional details regarding the architecture of our inverse dynamics and motion planning models
(Sec. 1.1), the incremental training protocol (Sec. 1.2), the baseline implementation (Sec. 1.3), the training dataset leveraged
throughout our experiments (Sec. 1.4), and the transformation of converting ego-vehicle pose into waypoints, speed, and
command (Sec. 1.5).

1.1. Network Architecture

Inverse Dynamics Model Architecture: We structure self-training a never-ending policy as two-stage learning. First, a
diverse ensemble of inverse dynamics, i.e., visual odometry (VO), models is used for pseudo-labeling the incoming image
stream. Subsequently, a motion planning policy model is trained with the pseudo-labels as targets. This decomposition
enables ∞-Driver to effectively and directly learn from demonstrated decisions in the frames, i.e., as opposed to pre-training-
based strategies which do not integrate decision-making behavior [20]. Moreover, an inverse dynamics model can be used
to infer speed and conditional command which are required as input for state-of-the-art goal-oriented motion planning
policies (e.g., [7–10]). By leveraging image-only data to obtain such inputs, our method is particularly suitable to large-scale
settings where GPS-based data may be noisy or intermittent. The network architecture of inverse dynamics model is inspired
by the efficient DeepVO [19] architecture, which proposes a direct regression, learning-based model without relying on any
known camera parameters. We extend the model to include a probabilistic model over the rotation predictions [14]. We
find it sufficient to only account for uncertainty in rotation, and probabilistic modeling of translation predictions, e.g., for
removing or re-labeling noisy samples, did not provide further gains. Moreover, based on our experiments, we find our
learning-based architecture to significantly outperform other VO baselines in our settings, i.e., over ORB-SLAM [6] and
DROID-SLAM [17]. Specifically, we leverage a FlowNet as the encoder and a branched decoder. One decoder predicts
the Matrix Fisher distribution and comprises Multi-layer Perceptron (MLP) with three stacked fully-connected (FC) layers
with hidden dimensions 128, 128, and nine, respectively, each with tanh activations. The second decoder is used to predict the
rotation and translation, comprising of two stacked LSTM layers each with 128 hidden dimension and a final FC layer with a
six-dimensional output (parameterizing 3D rotation and translation). To obtain robust pseudo-labels and estimate epistemic
uncertainty, we train and incrementally update a set of M = 5 models with identical architecture but initialized based on
different random seeds. A discussion on how we efficiently promote diversity among the models in training can be found in
Sec. 1.2.

Planning Policy Model Architecture: While our generalized framework can support any policy model, we design our policy
model similarly to prior conditional image-based driving policies [8, 21]. Given image, speed, and driving command, the
image is first encoded with a convolutional ResNet-34 backbone [8, 12] outputting a 512 by 8 by 13 descriptor which is then
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concatenated with the current speed. Following the concatenation, we implement a standard conditional prediction head (as
in Chen et al. [8]). We use three commands, where each head comprises three deconvolution layers and a spatial softmax
over predicted waypoint heatmaps to generate Bird’s Eye View (BEV) waypoint coordinates based on the driving command.
We note that we regress BEV waypoints directly instead of relying on a known homographic transformation. We refer the
reader to Chen et al. [8] for additional details.

1.2. Training Protocol

We first train our ensemble of inverse dynamics models on nuScenes-Boston, and subsequently incrementally update over
incoming images (e.g., videos from YouTube). For the inverse dynamics model training, the batch size is set to 16 and the
learning rate to 0.0005, optimized via SGD for 15 epochs. For the motion planning model training, the batch size is set to 96
and the learning rate to 0.001, optimized via Adam for 30 epochs. The size of S is set as 500,000. f inv

ψm
incrementally trains

on ten million YouTube images (extracted from videos at 10Hz) from various weather conditions and driving scenarios. The
time window size in temporal consistency-based re-labeling is set as six. Each label contains K = 5 sequential ego-relative
world coordinates, and the interval between each waypoint is 0.5 second. Thresholds ϵa and ϵb are set as 0.5. When training
the planning model, we train over a mix of the recent incoming data and the experience replay, as shown in Alg. 1 of the main
paper. We leverage multiple data augmentation strategies including randomized brightness, optical distortion, dropout, and
Gaussian blur. The model inference is highly efficient, with 50Hz and 100Hz for the inverse dynamics and planning policy
models, respectively, on an NVIDIA RTX 3090 GPU (ensemble inference can be parallelized). Training of our agent for the
results in the paper takes approximately three days.

Ensuring Ensemble Diversity: Our replay buffer incorporates encountered samples with the highest epistemic uncertainty,
as estimated via ensemble disagreement. The success of this selection mechanism pivots on maintaining a diverse set of mod-
els, often achieved by using different initial random seeds for the models. We have experimented with additional diversity-
promoting and calibration mechanisms [13, 15, 16], but did not observe a benefit over simple variation in the random seed
initialization (we note that most prior work studies such ensemble-based disagreement in simpler settings with minimally
complex, noisy, and OOD regression scenarios). Instead, we employ a simple strategy that ensures maintaining model di-
versity throughout the self-training process. Each inverse dynamics model only observes their own generated pseudo-labels,
and reservoir sampling [18] is employed to make sure that each sample in the recent video stream has an equal probability of
being selected into the dataset. We did not find it beneficial to further optimize the ensemble training, e.g., using a dedicated
replay buffer, and thus rely purely on the random seed and distinct pseudo-labels to maintain a diverse ensemble. Leveraging
additional models in the ensemble beyond five is likely to result in further gains (as we plan to study in the future), yet leads
to added computational overhead.

1.3. Baselines

In Sec. 2, we validate our underlying the role of leveraging an inverse dynamics model for pseudo-labeling over two recent
methods based on pre-training (PPGeo [20]) and policy self-training directly (SelfD [21]). We select PPGeo due to its state-
of-the-art performance compared to prior works (e.g., [22]), and leverage the publicly available authors’ implementation.
However, as the aforementioned methods make minimal use of underlying demonstrations in the videos and are not trained
in an incremental manner, they are complementary to our proposed framework. Below, we discuss the relevant baselines, yet
highlight that prior work in incremental learning do not generally incorporate learning from informative but highly-uncertain
samples which are pseudo-labeled nor a complex real-world driving decision-making task.

Dark Experience Replay (DER): DER [5] is a general continual learning framework that supports tasks boundaries blur
and domain shift settings. However, DER leverages reservoir sampling-based buffer (which does not effectively manage
informative samples) and has only been previously studied in simplified and fully supervised classification settings (on an
MNIST-based benchmark).

Rainbow Memory: Rainbow memory [2] is a recent method that tackles blurry task boundaries and integrates a diverse
memory management strategy based on per sample uncertainty. While relevant to our buffer construction strategy, such
methods for selecting high-uncertainty samples have only been previously studied in fully supervised settings with clean
ground-truth labels. In contrast, due to the inherent noise in the pseudo-labeling and self-training process, selecting high-
uncertainty samples in our settings can be counterproductive, and must require careful handling. Moreover, uncertainty is
measured based on data augmentation, which we find to be unreliable in our settings (we leverage model ensemble-based
disagreement).



PuriDivER: PuriDivER is closely related to us since they operate on noisy data streams, while incrementally learning on
several datasets, including CIFAR-10, CIFAR-100, Food-101N, ImageNet, and Webvision [3]. Similarly to PuriDivER, we
leverage a two-cluster Gaussian Mixture Model (GMM) in order to perform re-labeling and loss-based filtering of samples.
However, PuriDivER assumes access to both noisy and clean ground-truth labels throughout the re-labeling process. In
contrast, our settings involve pseudo-labels with potentially significant and diverse noise characteristics. As will be further
discussed in Sec. 2, as PuriDivER assumes access to a clean set of labels the employed re-labeling and consistency regular-
ization strategies (e.g., based on AutoAugment [11]) did not generalize at all to our settings since consistency regularization
training and re-labeling are less reliable due to the inherent noise in all the pseudo-labels. Instead, our framework leverages
temporal consistency-based re-labeling.

1.4. Web Data Statistics

To validate our proposed incremental self-training policy, we download a large set (totaling 369 videos) of driving footage
from YouTube from all over the world (30 countries based on the metadata). For practical reasons, we focus on longer
dashcam videos in our main results. All frames are resized to an image size of 400× 225. As mentioned in the main paper,
the set incorporates diverse driving scenes, including urban, highways, rural roads, off-road trails, mountains, forests, and
coastal areas as well as diverse weathers and times of day. Examples are shown in Figure 1. While the dataset is already large,
every day hours of driving data are uploaded to public sources. Our never-ending learning system is specifically designed to
efficiently train from additional videos in the future (the model has thus far seen over ten million frames, and counting). We
plan to continue and test the limits of our proposed approach on unconstrained and highly diverse real-world video data.

1.5. Pseudo-labels Transformation

We describe the details of transformation T here (Eq. 4 in the main paper). Given image It, to compute the future waypoints
of It, we first estimate the ego-pose of the image pairs {(Ii, Ii+1)}t+h

i=t . In our setting, we are computing the next five future
waypoints, the interval between waypoints is 0.5 second, and the fps of extracted frames from videos are 10Hz, thus h is set
as 25. We set the location of image It as the coordinate origin. The pose of each subsequent image In with respect to It
can be recovered by integrating estimated relative poses as

∏n−1
i=t p̂i where p̂i =

1
M

∑M
m=1 f

inv
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(Ii, Ii+1) are the averaged
estimated ego-motion from the ensemble models. Once we have computed the pose of each subsequent image with respect to
It, waypoint can be derived from the translation of the pose, speed is calculated as the average velocity between the origin and
the first waypoint, command is similarly recovered through thresholding the estimated trajectory sequence of five waypoints
to determine the turn direction.

2. Detailed Analysis and Ablations
In this section, we provide additional baseline comparisons (Sec. 2.1), ablation studies (Sec. 2.2), supportive validation in
closed-loop evaluation (Sec. 2.3), as well as additional qualitative examples (Sec. 2.4).

2.1. Baseline Comparisons

Table 1 compares our driving policy against recently proposed non-continual frameworks (SelfD [21] and PPGeo [20]). We
note that as SelfD have not released their code, we re-implement their method to the best of our efforts. For PPGeo, we utilize
the public GitHub repository and the pre-trained visual encoder. All models assume access to nuScenes-Boston. As SelfD
and PPGeo are not incremental learning frameworks, we show the ADE (Average Displacement Error) for these models on
our multi-dataset evaluation in Table 1. We further show an ablation baseline in which the inverse dynamics model is fixed
following the initial training phase, i.e., the inverse dynamics teacher doesn’t continuously update with the policy student
model. In all cases, the proposed approach outperforms the baselines in generalization. We find the geometric pre-training
method of PPGeo to be brittle on our large and diverse dataset. Moreover, while the underlying image representations may
be robust the method cannot effectively leverage decision-making from the unlabeled data. We find it to perform poorly on
our harsh cross-dataset generalization settings. Our model also outperforms both PPGeo and SelfD, with over 42% reduction
in ADE. We also highlight the benefit of continuously updating both teacher and student models over pseudo-labeled data,
i.e., as opposed to freezing inverse dynamics teacher during training. This experiment demonstrates that continually adapting
both models effectively generalizes over out-of-distribution data.

2.2. Ablations on Model Components

Our model comprises a complete agent that can handle highly diverse samples and noisy pseudo-labels during training. In
this section, we demonstrate the contribution of our proposed temporal consistency-based re-labeling method and adaptive



Table 1. Validation of Policy Training Strategy in Open Web Settings. We compare the performance of our semi-supervised learning
pipeline, where we train a driving policy using pseudo-labels from an ensemble inverse dynamics models, against two baselines, PPGeo [20]
and SelfD [21] (please refer to Sec. 2.1). We also compare with the ablation baseline that trains an incremental self-training policy student
with fixed inverse dynamics teacher. Remarkably, through our buffer selection and re-labeling process, our proposed approach outperforms
all prior methods.

Methods L̄−1 F̄−1 ADE−1

PPGeo [20] / / 5.748
SelfD [21] / / 1.962
∞-Driver (Teacher fixed) 1.929 -0.146 1.734
∞-Driver (Ours) 1.174 -0.017 1.130

filtering mechanisms. We show the ablation results in Table 2, where we find the individual components to be synergistic
for handling noise in pseudo-labels. We leverage three continual learning evaluation metrics: the revised Average Loss L̄−1,
Forgetting F̄−1, and ADE−1 after the model incrementally trains on ten million YouTube images. These metrics provide
insights into evaluating the performance and efficacy of our model under different conditions and configurations. Without
temporal consistency-based re-labeling and adaptive filtering mechanisms, we find the buffer to accumulate a high proportion
of noisy samples. This increase of noisy samples in the buffer results in less precise waypoints prediction and leads to drastic
ADE fluctuations, as evidenced by the higher L̄−1 and ADE−1.

Adaptive Filter Mechanisms: Our datasets contain ample amounts of “hard” examples, i.e., examples that are difficult for
the model to learn from or re-label. To effectively learn under such challenging settings, we further implement two additional
filtering mechanisms that can remove samples that hinder the self-training process. Specifically, we implement a confidence-
based filter in the model, i.e., for the removal of samples with deprecated images by identifying and rejecting those with
abnormally high entropy. We also implement a low-loss-based filter based on Eq. 9 of the main paper (based on the planner
loss in Eq. 5), i.e., samples that exhibit abnormally large ADE scores are deemed to be with highly noisy pseudo-labels and
are removed prior to updating the buffer. We observe the improvement in both the revised Average Loss and ADE score in
Table 2 which indicates the benefits brought by a buffer with more accurate pseudo-labels. As training progresses, our buffer
can be progressively replenished with new incoming driving data with better pseudo-label quality.

Temporal Consistency Module: To minimize removal of samples and effectively make use of diverse data, we incorporate
a temporal consistency-based re-labeling mechanism. Our temporal consistency-based re-labeling module enables pseudo-
label purification by utilizing temporal information to refine and improve the quality of pseudo-labels. We note that prior
methods in continual learning may leverage single-frame strategies for sample re-labeling and purification, e.g., based on a
convex combination of pseudo-labels or consistency regularization from data augmentation [3, 4]. Yet, we found these to not
be beneficial due to the significant noise in the pseudo-labels. The improvement due to the introduced temporal consistency
(TC) module is particularly evident in the Forgetting measure and the ADE score. These improvements demonstrate the
effectiveness of incorporating temporal consistency in the relabeling process, leading to more accurate and reliable training
samples, which in turn positively affects the model’s overall performance, especially in its ability to retain learned information
and predict more precise waypoints. Finally, by incorporating both temporal consistency-based re-labeling and adaptive
filtering mechanisms into our model, we achieve the best performance in both the Forgetting measure and the ADE score, as
shown in Table 2.

2.3. Validation in Closed-Loop Settings

Open-loop metrics measure adherence to human-preferred trajectories, yet cannot fully account for errors that lead to closed-
loop failure, e.g., collisions and infractions. Thus, to further validate the generalization of our findings, we validate model
results in closed-loop settings using CARLA (shown in Table 3). To replicate our training scheme in simulation, we first
train the visual odometry teacher model solely over one hour of driving data from routes in Town 1 and incrementally train
the driving policy student in Town 2 and Town 5 (one hour of driving data each). We input the predicted waypoints to a
PID controller to obtain low-level control. We further evaluate generalization performance on routes from unseen towns,
specifically Towns 3, 4, 6, and 7. In order to test the agent’s adaptability to diverse unseen situations, we further randomize
weather conditions and front camera orientation. We leverage the standard metrics used in the Carla leaderboard [1]: success
rate (SR), route completion (RC), infraction score (IS), and driving score (DS) as our metrics. Table 3 demonstrates our



Table 2. Ablation Study Over Three Main Model Components. We demonstrate the benefits of the two adaptive filtering mechanisms,
the confidence-based filtering (CF, Eq. 8 of the main paper, thresholding the estimated entropy of the distribution in Eq. 2) and the planning
loss-based filtering (LF, Eq. 9 of the main paper). We also analyze the impact of the temporal consistency-based re-labeling mechanism
(TC) across the revised Average Loss (denoted as L̄−1), Forgetting (denoted as F̄−1), and ADE−1 evaluation metrics. We find the three
components to be synergistic for handling noise in pseudo-labels.

EF LF TC L̄−1 F̄−1 ADE−1

1.195 -0.019 1.143
✓ 1.175 -0.032 1.133

✓ 1.168 -0.040 1.138
✓ 1.179 -0.017 1.134

✓ ✓ ✓ 1.173 -0.017 1.130

Table 3. Incremental Learning and Generalization Validation in Closed-Loop Settings. We report closed-loop metrics of Success Rate
(SR), Route Completion (RC), Infraction Score (IS), and Driving Score (DS) across incremental learning methods on CARLA. All metrics
are the higher, the better. Please see Sec. 2.3 for the adaptation and generalization evaluation setup.

Metrics DS SR RC IS
PuriDivER [3] 0.33 0.07 0.49 0.63
Rainbow [2] 0.38 0.13 0.52 0.66
DER [5] 0.41 0.10 0.58 0.66
∞-Driver (Ours) 0.47 0.21 0.61 0.70

performance compared to baseline incremental learning approaches within the challenging evaluation settings. Specifically,
we observe our agent to outperform the nearest baseline, DER, by about 15% in DS.

2.4. Qualitative Examples

We provide several qualitative results, including samples from our high-uncertainty replay buffer (Fig. 1), the impact of
temporal consistency (Fig. 2), examples detected through the adaptive filtering mechanisms (Fig. 3 and Fig. 4), and success
and failure motion planning cases (Fig. 5 and Fig. 6).



Figure 1. Selected High-Uncertainty Buffer Samples. We visualize example frames from the final episodic memory, demonstrating high
diversity and coverage over situations, times of day, and environmental conditions.
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