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Abstract

We introduce ZeroVO, a novel visual odometry (VO) algo-
rithm that achieves zero-shot generalization across diverse
cameras and environments, overcoming limitations in ex-
isting methods that depend on predefined or static camera
calibration setups. Our approach incorporates three main
innovations. First, we design a calibration-free, geometry-
aware network structure capable of handling noise in esti-
mated depth and camera parameters. Second, we introduce
a language-based prior that infuses semantic information
to enhance robust feature extraction and generalization to
previously unseen domains. Third, we develop a flexible,
semi-supervised training paradigm that iteratively adapts
to new scenes using unlabeled data, further boosting the
models’ ability to generalize across diverse real-world sce-
narios. We analyze complex autonomous driving contexts,
demonstrating over 30% improvement against prior meth-
ods on three standard benchmarks—KITTI, nuScenes, and
Argoverse 2—as well as a newly introduced, high-fidelity
synthetic dataset derived from Grand Theft Auto (GTA). By
not requiring fine-tuning or camera calibration, our work
broadens the applicability of VO, providing a versatile so-
lution for real-world deployment at scale.

1. Introduction

For a robot or autonomous vehicle to function reliably in the
real world, a generalized Visual Odometry (VO) system is
essential—one that can robustly estimate the relative cam-
era pose in metric coordinates from a sequence of images
under diverse and unforeseen conditions. However, gen-
eralization remains a significant challenge for current VO
models, which often suffer from lost feature tracks, opti-
mization instability, and drift, particularly when exposed to
varying lighting, dynamic scenes, or adverse weather con-
ditions [1, 11, 31, 35, 54, 69].

Due to the inherent difficulty and ambiguity in modeling
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camera ego-motion, a dynamic 3D world, and real-world
scale from 2D images, monocular VO algorithms have tra-
ditionally been built on strong assumptions and geomet-
ric constraints [3, 7, 10, 13, 16, 19, 20, 51, 52, 57, 84].
While carefully designed camera calibration or evaluation
on fixed data distributions can be effective in controlled set-
tings, such approaches can limit adaptability and scalabil-
ity to real-world scenarios with varying configurations that
may not align with such assumptions.

VO techniques have increasingly adopted learning-based
components to exploit statistical regularities in scene struc-
ture and motion dynamics. However, most learning-based
methods rely on privileged ground-truth data (e.g., accurate
camera parameters, optical flow) for supervision and often
train and evaluate on the same dataset [7, 20, 32, 33, 57,
62, 63, 68, 77]. Although recent studies explore generaliza-
tion beyond single-dataset settings [37, 42, 62, 63, 70], cur-
rent models continue to exhibit significant errors in the pres-
ence of more complex everyday contexts [1, 11, 31, 35, 54],
including harsh conditions such as rainy or snowy nights
(e.g., frequent glare, water streaks, reflections, and reduced
visibility), lens degradation (e.g., condensation, scratches,
dirt), or highly dynamic environments (e.g., dense intersec-
tions or aggressive motion). How can we design VO models
that generalize across conditions instead of quickly suffer-
ing from instability and drift?

In this work, we aim to advance the capabilities of
learning-based monocular VO. We introduce ZeroVO, a
novel transformer-based approach for robustly predicting
relative camera motion at real-world scale across variable
scenes in a zero-shot manner. By leveraging cross-attention
mechanisms [18, 65] to efficiently integrate contextual and
geometric priors directly into the network architecture, Ze-
roVO avoids common limiting assumptions—such as re-
liance on camera calibration or costly optimization steps.
Specifically, we fuse versatile multimodal text [43, 45, 55]
and depth-based priors [23, 27, 53, 80] to address inher-
ent scale ambiguity in metric VO. We demonstrate that
our proposed model is robust to noisy and uncalibrated se-
tups. We further optimize the model using a novel multi-
modal semi-supervised training framework that filters noisy



pseudo-labels in a geometry and language-guided process.
Our flexible VO framework achieves state-of-the-art, off-
the-shelf performance across diverse autonomous driving
datasets. To comprehensively assess system generalizabil-
ity, we also collect and analyze a novel Grand Theft Auto
(GTA) dataset featuring challenging scenarios with harsh
weather, high-speed motion, complex traffic scenes, and
varied camera settings. Our dataset and code are available
at https://zvocvpr.github.io/.

2. Related Work
Our framework builds on advances in foundational com-
puter vision models, particularly in metric depth prediction
and rich, generalized vision-and-language embeddings.

Learning-Based Monocular Visual Odometry:
Learning-based monocular visual odometry tasks can
be roughly categorized into two main approaches: neural
network models combined with multi-step geometric
optimization (e.g., full SLAM [7, 42, 49, 62, 63, 95]) or
direct, end-to-end relative pose estimation from two or few
consecutive frames [37, 66, 70, 79]. Hybrid methods such
as Droid-SLAM [62] have demonstrated strong perfor-
mance in dense scene reconstruction and pose estimation.
In contrast, two-frame pose regression tends to be more
robust in short-distance tracking scenarios, while SLAM
and other geometry-based approaches typically require
continuous, long-frame sequences. These methods often
rely on long-term feature matching and global optimization
techniques, such as loop closure detection. Although cer-
tain methods [30] can aid in initialization, SLAM remains
sensitive to environmental features and accurate motion
tracking, i.e., can fail to build and update a reliable map in
feature-deficient environments (e.g., corridors or repetitive
textures) or highly dynamic settings (e.g., crowds). In
contrast, two-frame pose regression is less affected by
such conditions as it does not rely on maintaining a global
representation. However, two-frame pose regression can
be prone to drift accumulation, as it lacks the temporal
optimization over extended frame sequences needed to
correct for drift. Our work improves over two-frame ap-
proaches due to inherent efficiency, versatility (i.e., as input
to downstream optimization), and minimal assumptions.

Metric Depth Estimation from Images: We leverage ad-
vances in metric depth estimation to address the inher-
ent ambiguity in recovering camera translation at real-
world scale. Traditional monocular depth models often
rely on scale-invariant losses or sparse supervision, mak-
ing them unsuitable for tasks such as visual odometry that
require consistent metric scale. Recently, models for pre-
dicting metric depth have demonstrated practical perfor-
mance [27, 53, 76, 82]. Models such as Depth Any-
thing [76] and UniDepth [53] aim to generalize depth pre-

diction across a wide range of scenes by leveraging large-
scale vision foundation models. WordDepth [82] proposes
the use of language-guided priors to reduce ambiguity in un-
constrained prediction of scale. Metric3Dv2 [27] provides a
zero-shot model that was trained across numerous datasets
and is capable of predicting real-world scale depth (and
surface normals) in diverse settings. By leveraging known
camera intrinsics and extrinsics, the model learns to trans-
form inputs into a canonical camera space. While existing
models often struggle in challenging real-world scenarios,
we adopt Metric3Dv2 to extract real-scale depth features
that enable accurate and robust visual odometry. To further
increase the flexibility and applicability of our approach, we
do not rely on traditional camera calibration or predefined
image information [85, 88–90]. Instead, we consider set-
tings where calibration may be unavailable or inaccurate,
and incorporate single-image camera parameter estimation
techniques such as WildCamera [94] to support inference
under uncalibrated conditions.

Rich Vision-and-Language Embeddings: Language-
guided models have shown strong generalization capabili-
ties by effectively bridging multiple modalities. Through
joint embedding spaces that capture generalized seman-
tic relationships between images and language, Vision-
Language Large Models (VLLMs) models have recently
achieved state-of-the-art results in diverse tasks such as
image captioning [15, 74, 81], visual question answer-
ing [2], and cross-modal retrieval [26]. LLaVA [45], for
instance, is now being broadly used across contexts and
tasks [12, 43, 46, 87]. Preliminary studies in autonomous
driving, e.g., Tian et al. [64], have shown VLLMs to be use-
ful for robustness under long-tail events. In our work, we
propose to integrate VLLMs to extract high-level semantic
descriptions of driving scenes that could serve as language-
based priors that guide metric-scale odometry and com-
plement adaptive inference under challenging visual con-
ditions.

Semi-Supervised Learning: Our work aims to develop
flexible models that can effectively adapt to new environ-
ments, including through the use of unlabeled data. Semi-
supervised learning (SSL) is being increasingly used in
computer vision and machine learning tasks, particularly in
domains where annotated data is scarce, costly, or requires
expert supervision [4, 5, 9, 14, 21, 24, 25, 28, 34, 38, 58,
61, 93]. In the context of visual odometry, SSL can po-
tentially enable the use of large-scale, unlabeled video data,
such as web videos [37, 86], to expand the diversity of train-
ing scenarios and further improve generalization. However,
SSL also presents challenges, including noisy pseudo-labels
and the risk of propagating errors through repetitive training
cycles, which we address in our work through multimodal
pseudo-label selection mechanisms.
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A nighttime driving scenario. There are multiple vehicles, including cars and a van, stopped at 
an intersection. A traffic light shows a green light. Streetlights cast a glow on the wet surface. 

Figure 1. Multimodal and Geometry-Guided Network Overview. Given a pair of input images, our model computes a rich multimodal
embedding through a transformer-based fusion module. The embedding is then passed to a two-branch decoder MLP that outputs real-
world translation and rotation. Our architecture (Sec. 3.1) leverages cross-attention to fuse complementary cues, including flow, depth,
camera intrinsics, and language-based features in a geometry-aware manner. The language prior is first used to refine both the depth map
and 2D flow estimates. The refined depth is then unprojected into 3D (using estimated parameters) to compute scene flow, which is further
enhanced and fused with additional features before decoding. By embedding geometric reasoning and multimodal priors directly into the
network structure, our model achieves strong zero-shot generalization across diverse and challenging settings.

3. Method

Our method (Fig. 1) facilitates generalization via mini-
mal and versatile image-based priors, integrated through-
out our model structure. In this section, we first formalize
our generalized, calibration-free monocular VO task. We
then detail the proposed transformer-based geometry and
prior-guided network structure in Sec. 3.1 and the semi-
supervised training process in Sec. 3.2.

Monocular VO with Minimal Assumptions: In its most
general form, monocular VO assumes two consecutive
RGB frames I = {Ii−1, Ii}, I ∈ RW×H×3 and learns to
predict a real-world relative pose between the two camera
views Ti = [Ri|ti], where Ri ∈ SO(3), ti ∈ R3 are the
relative rotation and translation, respectively. We focus on
the efficient two-frame setup as it enables a fair compari-
son to other baselines methods (e.g.,TartanVO [70]) while
quantifying real-time sequential drift, i.e., prior to any ad-
ditional global optimization steps, such as loop closure and
bundle adjustment [51, 60, 62]. In Sec. 4, we find ZeroVO
to outperform more complex methods that leverage compu-
tationally expensive, multi-frame refinement steps. We em-
phasize that monocular VO methods generally evaluate un-
der up-to-scale settings [51, 63, 70], as estimating a metric-
scaled transform from image pairs can be difficult, while
reducing the solution space through known camera pose
Tcam

i and intrinsics, including the camera’s focal length

and center, {fU , fV , cU , cV } (these are used in the cam-
era intrinsic matrix, denoted as Ki ∈ R3×3). However,
in our formulation, we do not assume any prior knowledge
of camera parameters, as it can be limiting and require re-
calibration in cases of lens issues or different camera se-
tups. Instead, to guide learning and inference, we rely on a
set of versatile image-based priors built into the network
structure. Specifically, we extract a rich set of modali-
ties, including estimated flow F̂i ∈ RW×H×2, depth map
D̂i ∈ RW×H , camera parameters K̂i, and rich language-
based context features Zl

i ∈ RWl×Hl that provide comple-
mentary cues regarding scene semantics, layout character-
istics, and scale. Our network structure fuses the estimated
cues in a geometrically-guided process, discussed next.

3.1. Geometry and Prior-Guided Network

Our network structure comprises three key components: (1)
an encoding module, which estimates camera intrinsic pa-
rameters and extracts a rich, multimodal set of cues; (2) a
text-conditional, geometry-guided transformer module that
leverages general structural priors to unproject data into 3D
space and fuse the different modalities; and (3) a decoding
module for probabilistically predicting ego-motion.

Intrinsic Parameters Estimation: VO methods generally
rely on accurate knowledge of camera extrinsic and intrinsic
parameters while training and testing on datasets with fixed



camera settings. To enable more generalized VO, we do not
rely on such restrictive assumptions. We instead propose
to estimate the camera intrinsic parameters leveraging re-
cent advances in in-the-wild, single-image intrinsic param-
eter estimation [27, 94] (primarily relying on 3D monocu-
lar priors). We leverage an off-the-shelf solution [94], as
we do not require the estimation to be completely accu-
rate. The intrinsic matrix will also be used to inform the
geometry-aware transformer and semi-supervised network
training (Sec. 3.2). To align with image-level cues and en-
able the network to recover from noisy estimates, the intrin-
sic parameters are encoded into an image-sized array,

IK̂(u, v) =
|u− cU |

fU
+

|v − cV |
fV

(1)

where the intrinsic information is explicitly preserved
within each intrinsic map [70]. Encoding parameter infor-
mation into an image map provides an efficient approach
for our transformer module to reason over noisy geometric
information, as will be discussed below. We note that IK̂

uniquely represents a specific camera configuration.

Extracting Multimodal Image Cues: To holistically rep-
resent general scene priors, scene dynamics, and camera
motion and geometry, we employ a rich and complemen-
tary set of image-based features. As in standard VO meth-
ods, we extract optical flow [70] from the image pair using
a MaskFlownet [91] encoder ( We extract the optical flow
F̂ as well as a correlation feature F̂c, which represents 2D
correspondences between the images, from the intermediate
layer of MaskFlownet). To estimate a metric-scale depth
map D̂, we utilize the estimated camera intrinsic parame-
ters with Metric3Dv2 [27]. Finally, although camera infor-
mation and metric depth can aid in understanding camera
projection and motion, estimating these from a single im-
age can be noisy and ill-posed. Thus, in addition to depth-
based cues, we propose to leverage complementary text-
based cues that can reduce ambiguity by capturing high-
level scene semantics and layout characteristics. Specifi-
cally, we leverage LLaVA-NeXT [44] to extract rich im-
age descriptions which are encoded using Sentence Trans-
formers [55]. In addition to providing useful context in ar-
bitrary scenes during inference, we leverage the language-
based cues to filter noisy pseudo-labels in Sec. 3.2. We fuse
modalities in a geometry-guided process, described next.

Unprojection to Pseudo-3D: The estimated depth map can
be unprojected into a 3D point cloud P ∈ RW×H×3 us-
ing the estimated camera matrix [71], i.e., by computing
3D world coordinates p = dK̂−1u, where u = (u, v) is
a pixel in homogeneous coordinate and d = D̂(u). We
stack and normalize the resulting unprojection into a 3D ar-
ray D̂3D. We unproject the 2D optical flow into 3D to ob-
tain a scene flow F̂3D matrix (additional details regarding

this step can be found in our supplementary). While these
steps integrate physically-coherent camera and 3D informa-
tion into a consistent representation, we expect the 3D maps
to be noisy, particularly in our challenging generalization
and adverse settings. Hence, instead of being explicit con-
straints, the 3D maps are integrated as minimal structures
into a transformer-based module.

Language and Geometry-Guided Transformer: We em-
ploy transformer [18, 65] to fuse the multimodal priors
while reasoning over structure and noisy pseudo-3D infor-
mation. We process the estimated flow and depth maps to
compute two types of language-conditioned descriptors, a
depth-based feature ZD,

Z = CA(PE([D̂, IK̂]),Zl) (2)

ZD = CA(PE(D̂3D),Z) (3)

and a flow-based feature ZF computed in a similar manner,

Z = CA(PE(F̂c),Zl) (4)

ZF = CA(PE(F̂3D),Z) (5)

where CA(Q,KV) denotes Cross-Attention, with query Q
and key-value pair KV, and PE denotes a patch and posi-
tional embedding [18]. We note that we concatenate fea-
tures with the intrinsic image to enable the model to learn
coherence under noise, as accurate 3D reasoning is influ-
enced by the focal length [27].

Probabilistic Ego-Motion Decoder: The refined and
aligned features, ZF and ZD, are concatenated and de-
coded into ego-motion. Our decoder consists of two MLP
output branches, one predicting translation and the other
rotation. For translation, we leverage metric-scale regres-
sion [70]. For rotation estimation, we fit a probabilistic dis-
tribution, specifically a matrix Fisher distribution (follow-
ing [37, 48, 50]) to model the rotation distribution in SO(3).

p(R|Ψ) =
1

c(Ψ)
exp(tr(Ψ⊤R)) (6)

where R ∈ SO(3) is the rotation matrix, Ψ ∈ R3×3 are
the parameters of matrix Fisher distribution, and c(Ψ) is a
normalization constant [48].

3.2. Model Training via Semi-Supervision
Due to the minimal assumptions employed by our
calibration-free VO framework, the model can be effec-
tively trained over in-the-wild, large-scale video collec-
tions. Hence, we consider both the standard supervised
and a proposed semi-supervised training setup, detailed in
this section. We employ the rich priors extracted from
Sec. 3.1 in the semi-supervised training to filter noisy
pseudo-labeled samples.



Supervised Training: Our model can be trained for a stan-
dard VO task, without requiring privileged information,
e.g., ground-truth camera parameters, flow, or depth. We
optimize the multi-head decoder MLP using Mean Squared
Error (MSE) loss over predicted translation t̂ and negative
log-likelihood of rotation R over the predicted distribution
parameters Ψ̂,

L = ∥t− t̂∥22− log(p(R|Ψ̂)) (7)

While our supervised model already achieves strong per-
formance, we further explore incorporating an additional
training stage using pseudo-labeled samples generated by
running the first-stage model on unlabeled data.

Generalization with Semi-Supervised Training: Our
goal is to learn effective representations for generalized VO
at scale. We thus investigate leveraging semi-supervised
training to continue and update the model from unlabeled
data. This training involves two stages, first with a super-
vised (i.e., teacher) model trained using the aforementioned
objective function on an annotated dataset. Next, we sam-
ple pseudo-labels from the model [9, 39, 56] over a large
unconstrained dataset collected from YouTube [75], and
re-train the model over the mixed annotated and pseudo-
labeled dataset. Thus, the semi-supervised setup enables
us to investigate the robustness and flexibility of our model
in learning from diverse and challenging data with noisy
supervision. While semi-supervised training has become a
standard evaluation setup in computer vision [29, 40, 59,
67, 73, 78], as in Sec. 3.1 we explore the benefits of prior-
informed mechanisms that can facilitate learning at scale
from noisy examples.

Geometry-Guided Pseudo-Label Selection: To robustly
learn from potentially noisy pseudo-labels, we employ a
geometrical consistency error obtained based on estimated
quantities. Specifically, motivated by prior work in unsuper-
vised VO using known camera parameters [41, 47, 47, 83,
92], we warp a frame to the next frame with the estimated
intrinsic matrix and ego-motion, ui = K̂i(dR̂iK̂

−1
i−1ui−1+

t̂i). We then employ a Structural Similarity Index Measure
(SSIM) error [6] to quantify the similarity between an ob-
served image Ii+1 and Îi+1. To ensure that we capture di-
verse patterns of reconstruction challenges, we further nor-
malize by the two-frame SSIM, i.e.,

normSSIM =
SSIM(Îi+1, Ii+1)

SSIM(Ii, Ii+1)
(8)

and exclude samples based on a fixed NormSSIM threshold.
We note that SSIM assesses similarity by evaluating struc-
tural information, luminance, and contrast, thereby offering
a perception-oriented measure of similarity in contrast to
traditional measures based on pixel-wise errors.

Language-Guided Pseudo-Label Selection: In addition
to the geometry-based consistency pseudo-label check, we
leverage our language-based module to filter redundant
examples while maintaining an informative and diverse
pseudo-labeled dataset. Although distinct text descriptions
may not necessarily correspond to distinct pose transforma-
tions, we observe that two images characterized by nearly
identical text descriptions are likely to be close in the vi-
sual space as well. To address sentence sequence variations
within a paragraph, rather than serializing all text features
into a single vector, we interpret the language feature as a
subspace in a higher dimension. We leverage a subspace-
based similarity over a short time window H , and compute
the text feature similarity between the first image Ii and the
last image Ii+H in the time window [36]. Specifically, we
compute similarity as:

subspace-sim = sin(arccos(trace(Λ)))2 (9)

where Λ is the eigenvalues matrix obtained via Singu-
lar Value Decomposition over Q⊺

i Qi+H , the orthonormal
matrices from the QR decompositions of text features Zl

i

and Zl
i+H . As in the geometric consistency selection,

we remove sequences with low informativeness (i.e., high
subspace-sim). The selection mechanism can thus help sta-
bilize learning under the noisy and diverse pseudo-labels.

3.3. Implementation Details

In our implementation, we leverage the pre-trained Wild-
Camera [94] model to estimate camera intrinsics. We uti-
lize the MaskFlowNet encoder [91] and Metric3Dv2 [27],
as flow and depth backbones, respectively. Sentence Trans-
formers [55] is used to extract a 15 × 768 language-based
feature matrix. For semi-supervised training, we follow
prior work and collect a large-scale, unconstrained web
video dataset for additional training [37, 75]. In our anal-
ysis, we present three model variants: ZeroVO, ZeroVO+,
and LiteZeroVO+. ZeroVO serves as the default model in
our experiments, while ZeroVO+ is further trained on the
web video dataset with the proposed multimodal pseudo-
label selection mechanism. LiteZeroVO+ shows a resource-
constrained variant that omits the language-conditioned in-
put modules by replacing the cross-attention module (for
conditioning on the language cues and refining the esti-
mated flow and depth maps) with self-attention. The train-
ing protocol remains consistent with that of the standard Ze-
roVO+. We train our network architecture using NVIDIA
RTX 4090 GPU with a batch size of 16. ZeroVO+ achieves
an inference speed of approximately 0.6 FPS, primarily
constrained by the slower Lava-Next module (0.7 FPS), and
LiteZeroVO+ obtains an inference speed of 5 FPS. Com-
plete implementation and training details can be found in
our supplementary.



4. Experiments

4.1. Experimental Setup

Real-World Datasets: To study the generalization abil-
ity of our model, we conduct experiments using five
datasets including three widely adopted datasets for au-
tonomous driving: nuScenes [8], KITTI [22], and Argo-
verse 2 [72], as well as an introduced Grand Theft Auto
V (GTA) simulated dataset with challenging environmental
and lens conditions. nuScenes covers four distinct regions
across Boston and Singapore: Boston-Seaport, Singapore-
OneNorth, Singapore-Queenstown, and Singapore-Holland
Village. It encompasses various challenging conditions,
such as heavy traffic, nighttime driving, and scenarios in-
volving strong light reflections, making nuScenes particu-
larly valuable for assessing the robustness of models under
diverse and complex real-world conditions. In our evalu-
ation, we train on a subset of nuScenes, and test on other
benchmarks in a zero-shot manner. KITTI is the most
widely evaluated dataset in the VO task. Specifically, the
camera intrinsics in KITTI differ significantly from those of
the other three benchmarks, making it an important dataset
for evaluating a model’s ability to adapt to varying cam-
era configurations. Argoverse 2 collects data from six dis-
tinct U.S. cities and encompasses a wide range of weather
conditions and driving scenarios. Notably, the dataset in-
cludes grayscale images captured by the stereo front cam-
era, which provides another generalization stress-test for the
model. We also follow Lai et al. [37] and leverage on-
line driving videos from YouTube, encompassing footage
across multiple cities, including urban areas, villages, na-
tional parks, mountainous regions, and coastal areas, under
a wide range of weather conditions. This dataset enables us
to study the benefits of diverse unlabeled data while provid-
ing an ideal environment for the model to self-learn numer-
ous variations induced by camera motions.

GTA Dataset: Besides the three public datasets, we in-
troduce a newly generated simulated dataset derived from
the high-fidelity, GTA simulation. Our GTA dataset con-
sists of 922 driving sequences captured within a simulated
city environment, encompassing a range of diverse weather
conditions, driving speeds (particularly high-speed maneu-
vers not found in other public datasets), traffic scenarios,
and times of day. Compared to other commonly used open-
source simulation platforms such as CARLA [17], GTA of-
fers several key advantages: (1) enhanced image realism
through the application of the reshade graphic settings that
support higher quality rendering, and (2) a wider variety of
road conditions across various weather scenarios. For on-
road driving, these conditions include significant uphill and
downhill gradients, tunnels, and underground parking facil-
ities; for off-road driving, the environment features moun-

tains, deserts, snow-covered terrains, and forests, thereby
enabling more precise and complex rotational dynamics
throughout the map.

Experimental Setting: Similar to XVO [37], our frame-
work is trained on data from a single city in the nuScenes
dataset. Unlike XVO, we observed that Boston-Seaport,
Singapore-Queenstown, and Singapore-Holland Village
contain the majority of challenging conditions, such as
rain, nighttime driving, light reflections, and heavy traffic.
Therefore, we use Singapore-OneNorth as our supervised
training dataset and the remaining regions, KITTI, Argo-
vere 2, and GTA, as test datasets. It is important to note
the main evaluation is done on datasets that were unseen
by our model during training and without assumed camera
parameters.

Baselines: We compared the four most related baselines
that demonstrate generalization across datasets without re-
quiring additional fine-tuning: TartanVO [70], XVO [37],
DPVO [63], and Metric3D+Droid-SLAM (M+DS) [27, 62].
TartanVO employs effective random cropping and resiz-
ing techniques to simulate diverse camera configurations,
thereby enhancing the generalization of rotation estimation
across unseen datasets. XVO leverages a multi-modality
architecture to implicitly extract richer spatial features and
integrates self-training to achieve robust generalization per-
formance in both rotation estimation and real-world scale
recovery. DPVO employs a recurrent update operator for
patch-based correspondence, complemented by differen-
tiable bundle adjustment, demonstrating strong zero-shot
performance in rotation estimation. M+DS utilizes the gen-
eralization capabilities of Metric3D v2 and Droid-SLAM
to accurately estimate metric depth and rotation, effectively
recovering the motion trajectory at a real-world scale. Our
main baseline is M+DS which achieves state-of-the-art gen-
eralization results across dataset.

Metrics: To provide a comprehensive analysis of the re-
sults, we utilize Translation Error (terr), Rotation Error
(rerr), Absolute Trajectory Error (ATE), and Scale Error
(serr) [22, 37]. terr and rerr compute the average transla-
tion error (%) and rotation error (◦/100 m) across all possi-
ble subsequences within a test sequence with lengths rang-
ing from 100 to 800 meters. ATE measures the deviation
between the estimated trajectory and the ground-truth tra-
jectory by comparing the positions of corresponding poses,
making it an effective metric for measuring drift over time.
The scale error (serr) measures the average discrepancy be-
tween the predicted translation and the ground truth trans-
lation. Combined with rotation error (rerr) and Absolute
Trajectory Error (ATE), it allows us to effectively determine
whether accumulated drift is attributed to scale inaccuracies
or rotational deviations.



Table 1. Comparative Analysis Across Datasets. We compare ZeroVO variants with existing baselines using standard metrics of transla-
tion, rotation, absolute trajectory, and scale errors. All methods are provided with estimated camera intrinsics and metric depth. ZeroVO+ is
our model trained with further data using semi-supervision, and LiteZeroVO+ is a smaller model variant for resource-constrained settings.
Our models demonstrate strong performance across metrics and datasets, particularly in metric translation estimation. As highlighted by
the scale error, GTA and nuScenes contain challenging evaluation settings, including nighttime, weather variations, haze, and reflections.
We note that TartanVO and DPVO baselines (in gray) only predict up-to-scale motion and use privileged information, i.e., ground-truth
scale alignment in evaluation.

Method KITTI 00-10 nuScenes Argoverse GTA
terr rerr ATE serr terr rerr ATE serr terr rerr ATE serr terr rerr ATE serr

XVO [37] 16.82 3.84 168.43 0.17 12.75 5.11 8.30 0.16 9.13 4.86 5.70 0.12 25.56 12.64 28.02 0.21
M+DS [27] 14.22 2.72 154.77 0.09 17.08 1.46 10.46 0.18 16.67 1.79 8.51 0.13 23.53 10.38 12.96 0.26

ZeroVO 7.69 2.72 105.07 0.07 10.98 4.48 6.79 0.14 6.83 3.13 4.10 0.11 14.74 10.63 8.55 0.17
ZeroVO+ 6.81 2.69 104.69 0.06 9.74 4.37 6.03 0.12 4.64 2.83 3.05 0.09 13.42 7.99 8.24 0.17

LiteZeroVO+ 8.85 2.90 118.54 0.08 11.57 4.44 6.87 0.13 7.65 3.82 5.28 0.11 15.93 12.16 11.26 0.18

TartanVO [70] 13.85 3.27 103.07 - 10.27 6.35 6.26 - 11.17 5.30 7.03 - 10.56 9.35 3.82 -
DPVO [63] 8.31 2.37 78.53 - 4.34 2.85 2.66 - 2.66 1.25 1.59 - 12.65 10.67 4.33 -

Table 2. Ablation Analysis for Model and Training Components. We analyze various model components: Flow module (F), Depth
module (D), Language prior (L), Semi-supervised training (S), and Pseudo-label Selection (P). Flow, depth, and language correspond to
the proposed supervised ZeroVO model. Results with additional semi-supervised training are shown as ZeroVO+ (showing state-of-the-art
performance by integrating all of our proposed components).

F D L S P KITTI 00-10 nuScenes Argoverse GTA
terr rerr ATE serr terr rerr ATE serr terr rerr ATE serr terr rerr ATE serr

✓ 18.76 5.49 174.24 0.18 19.40 7.42 12.54 0.22 12.23 6.34 9.42 0.20 25.68 15.52 25.38 0.25
✓ ✓ 8.99 2.92 123.42 0.08 12.26 5.23 8.40 0.15 8.62 4.11 5.71 0.11 16.76 12.75 12.37 0.19
✓ ✓ ✓ 7.69 2.72 105.07 0.07 10.98 4.48 6.79 0.14 6.83 3.13 4.10 0.11 14.74 10.63 8.55 0.17
✓ ✓ ✓ ✓ 9.11 2.88 117.49 0.08 12.25 5.39 7.53 0.14 7.98 3.95 5.13 0.11 16.49 11.95 10.27 0.18
✓ ✓ ✓ ✓ ✓ 6.81 2.69 104.69 0.06 9.74 4.37 6.03 0.12 4.64 2.83 3.05 0.09 13.42 7.99 8.24 0.17

4.2. Results

Generalization Performance: To examine the generaliza-
tion ability of our model, we evaluate it on entire sequences
on KITTI, the unseen regions in nuScenes, and the simu-
lated dataset GTA. Table 1 compares ZeroVO+ with prior
baselines in a zero-shot setting. For a fair comparison of
the zero-shot performance, all models are provided with the
same estimated camera intrinsics and metric depth (if re-
quired). TartanVO and DPVO can only estimate rotation
and require scale alignment with ground-truth translation
to reconstruct the trajectory at a real-world scale. From
the results in Table 1, our model achieves superior perfor-
mance across nearly all metrics on the four datasets. It is
important to note that sequences on KITTI are significantly
longer compared to those in other datasets, making them
more prone to accumulating large drift (i.e., high ATE). Our
method accurately predicts rotation and translation scale on
KITTI, resulting in the lowest ATE among all baselines,
even without incorporating multi-frame temporal optimiza-
tion. The results on the GTA dataset further demonstrate
the strong generalization capability of our model, achiev-

ing ATE results comparable to scale-aligned DPVO, which
leverages privileged evaluation. In Table 3, we divide the re-
maining regions in nuScenes into different subsets based on
various weather conditions: day, night, rain, and light. The
strong light scenario is caused by severe light reflections.
We find that night and strong light conditions present the
most challenging scenarios, as it is difficult for the model
to detect and extract valuable information. We demonstrate
that our model achieves the best performance across all con-
ditions, highlighting its robustness against external noise.

Ablation Study: In Table 2, we study the roles of each
module in our model structure. We begin by analyzing the
impact of our depth module. When the model is equipped
with only the flow module, the model struggles to general-
ize to unseen scenarios, particularly in terms of scale es-
timation. This outcome is expected, as predicting scale
from a single image without any additional context is an
ill-posed problem. By incorporating the depth module, the
model demonstrates improvements across all metrics, par-
ticularly in scale estimation. This improvement indicates
that by concatenating the estimated metric depth with the
intrinsic image, the model can effectively learn coherent



Figure 2. Qualitative Results on KITTI. We show trajectory prediction results across the four most complex driving sequences (00, 02,
05, and 08) from the KITTI dataset. Each subplot illustrates the trajectories generated by our proposed model and the baseline models
alongside the ground truth trajectory. The qualitative results demonstrate that our approach achieves the highest alignment with the ground
truth, particularly in challenging turns and extended straight paths. These findings highlight the robustness of our method in handling
complex and diverse driving scenarios.

3D spatial information, even in the presence of noise, and
accurately estimate scale. It is also noteworthy that the
depth module improves rotation estimation performance.
This demonstrates that leveraging both depth and optical
flow to unproject 3D scene flow provides crucial 3D cor-
respondence information that leads to improved rotation es-
timation. The experiment with textual information further
demonstrates the model’s robustness against noise. Under
challenging driving conditions, such as numerous dynamic
objects, darkness, strong light reflections, rain, and fog, the
estimated camera intrinsics and metric depth are highly sus-
ceptible to becoming unreliable. The general text descrip-
tion is able to provide extra 3D information, such as object
layouts and movements, which helps the model maintain ro-
bustness in highly noisy environments. At last, we demon-
strate the effectiveness of our semi-supervision approach
using pseudo-label selection. Without pseudo-label selec-
tion, we observe a drop in the model’s performance com-
pared to the supervised trained model. This decline is due
to the introduction of excessive pseudo-labeled examples
with redundancy and uncertain label quality, which hinders
model training. Our pseudo-label selection process effec-
tively filters out highly redundant and low-quality pseudo-
labeled examples, achieving the best performance among all
zero-shot metric-scale models. Further ablations and analy-
sis can be found in our supplementary.

Qualitative Analysis: Fig. 2 depicts the most complex and
longest trajectories on KITTI, compared with the two best-
performing baselines. The trajectory of DPVO is aligned
with the ground-truth translation after scale adjustment.
Therefore, it is straightforward to see how inaccurate rota-
tion estimation results in drift accumulation. A comparison
between the results of DPVO and M+DS reveals how inac-
curacies in translation estimation further exacerbate drift ac-
cumulation. By leveraging general textual information and
unprojecting 2D data into 3D space, our model effectively
extracts more accurate and inherent correspondence fea-

Table 3. Condition Breakdown on nuScenes. We show results
breakdown (ATE) over scenes categorized by weather and lens
settings. We sample from nuScenes the Day, Night, and Rainy
scenes, along with particularly challenging frames that include se-
vere light reflections. Our ZeroVO+ model performs best overall.
We note that TartanVO and DPVO baselines only predict up-to-
scale motion and use ground-truth scale alignment in inference.

Method Day Night Rainy Light
XVO [37] 6.61 14.41 15.99 15.73
M+DS [27] 6.08 17.19 17.49 18.54

ZeroVO 3.90 10.33 12.63 13.33
ZeroVO+ 3.60 10.26 10.10 11.15

tures, which enhance robustness even when the estimated
depth or camera intrinsics are noisy.

5. Conclusion
We introduced ZeroVO, a novel transformer-based frame-
work designed to tackle the challenge of visual odometry
generalization under adverse and unseen conditions. Ze-
roVO integrates rich multimodal cues—spanning geome-
try, language, and vision—within a unified architecture to
enhance robustness and adaptability in complex environ-
ments. Its camera-agnostic design, combined with a semi-
supervised training paradigm, enables effective handling of
noisy data and seamless adaptation to novel scenarios. Ex-
tensive evaluation across diverse and challenging bench-
marks demonstrates that ZeroVO establishes a new standard
for zero-shot VO performance, underscoring its promise for
real-world deployment without the need for camera recali-
bration or domain-specific tuning.
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